RSAC 2019 | 采用NLP机器学习来进行自动化合规风险治理

本届RSA大会“合规与风险治理”专题中大部分聚焦于网络安全风险的量化以及相关的实践案例,如Palo Alto Networks公司的Rich Howard 演讲《Superforecasting II: Risk Assessment Prognostication in the 21st century》,阐述了如何将半定量的风险评估转变为更深入的准确量化风险评估;《Math is Hard: Compliance to Continuous Risk Management》中分享构建量化风险管理的整个流程;另外在《NIST Cybersecurity Framework and PCI DSS》中介绍了PCI-DSS标准在CSF框架中的实践情况,指出标准至CSF的复杂映射关系的问题。

数据分析与机器学习如何为业务安全赋能?

目前传统的安全检测、防护类设备针对业务应用安全基本上没有防护效果。数据分析与机器学习为业务安全问题提供了一个有效的解决方案。基于业务的历史数据,通过统计分析与机器学习的方法学习出业务的历史特征,结合专家知识形成业务特征的基线。根据基线来检测业务行为是否存在异常。本文给出了几个通过数据分析和机器学习的方法检测业务系统中异常的具体案例:web业务安全、物联网卡业务安全、变电站业务安全。

【RSA2018】利用人工智能和机器学习优化威胁检测和应急响应

从这几天RSA关于 人工智能AI 的报告分享来看,AI技术已经从之前的理论普及阶段转变成实际场景应用阶段。不少厂商的产品开始享受AI技术所带来的红利,利用AI来提高其产品的威胁检测和决策运维能力,不管是创新沙盒(Innovation SandBox) Top10公司,还是逐渐正式亮相的各大厂商展台,AI已是标配。这篇文章介绍了如何利用人工智能和机器学习优化威胁检测和应急响应,并分享了RSA大会上的AI实际安全场景应用产品,也介绍了绿盟科技利用AI技术的实际案例-全流量威胁分析平台TAM。

【RSA2018】如何在威胁建模中利用机器学习和威胁情报

机器学习 和威胁情报在如今“数据驱动”(Data Driven)的时代依然是极为热门的概念,但是具体如何在威胁建模中采用机器学习,如何有效消费泛滥成灾的 威胁情报,在本届RSA大会中,有不少厂商也提出了自己对应的解决方案,包括:利用机器学习进行脆弱性管理预测,以及多源异构情报管理模型。

【视频】TechWorld2017热点回顾 | 边缘计算和机器学习在移动威胁对抗中的思考

人工智能解决问题的时候通常是去收敛、去逼近、去寻找拟合,是一个逐步强化的过程。但是对于安全来讲,它是一个发散性的问题,是不收敛的,它的目标就是要通过不收敛的方法去对抗,要绕开你。所以这点上来讲网络安全和当前的整个人工智能大方向就是完全冲突的。

但是人工智能范围很大,我们还是可以在安全的整个过程当中使用这些先进的理念、方法和新的意识的东西。但是我觉得不要盲目地使用机器学习或者是这些新的算法。这里,我们需要先弄清楚为什么要用机器去学习前面的认知的过程,然后再讲讲我们怎么用,最后讲讲我们用的姿势和尝试的方法。

【视频】TechWorld2017热点回顾 | 机器学习在安全攻防的实践

TechWorld 2017的圆桌论坛中我们讨论了机器学习在网络安全的应用,那机器学习在安全攻防的具体实践有哪些呢?如何利用机器学习对安全事件进行回溯及预警?机器学习、全流量威胁分析、攻击链、时序关联这些热点词你都懂吗?读完这篇文章你就离老司机不远了!

文字不过瘾?直接点击文末视频链接近距离感受机器学习的神秘魔力吧!

【视频】TechWorld2017热点回顾 | 当围棋大咖遇上网络安全精英:Google人工智能与机器学习探讨

TechWorld2017大会上最有火花的时刻莫过于围棋世界冠军古力、绿盟科技副总裁周凯和滴滴安全研究部负责人蔺毅翀参与的圆桌论坛:Google人工智能与机器学习。众所周知,AlphaGo已经成了围棋界的神话,那作为世界围棋冠军的人类棋手古力对人工智能有什么样的看法呢?当围棋遇到了网络安全,又会碰撞出什么样的火花呢?网络安全与人工智能将如何齐头并进?

带着这些疑问,让我们从TechWorld2017的圆桌论坛中一探究竟吧!

点击文末的现场视频链接,真切的感受围棋跨界网络安全的魅力吧!

攻守“军备竞赛” 2017 如何布局

有朋友说,2016是“突飞猛进”的一年。的确,一方面,网络攻击事件的规模和影响产生了一系列新的记录。如图1,数据泄露单事件丢失的记录数量创出新高[1];绿盟科技在2016年8月观察到拒绝服务攻击峰值流量达到前所未有的3.7Tbps[2]